ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Ralph Wiser, Emilio Baglietto
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1143-1166
Research Article | doi.org/10.1080/00295450.2023.2202802
Articles are hosted by Taylor and Francis Online.
Turbulent heat transfer in buoyancy-dominated flows is a challenging problem for computational fluid dynamics (CFD). Many authors attribute model error in these conditions to the Reynolds analogy. We leverage a brand-new direct numerical simulation database to evaluate the performance of several popular turbulence models in buoyant diabatic channel flow. We find that heat transfer results are relatively accurate, with a Nusselt number error less than 20%. However, the turbulent flow solution is very inaccurate, with wall shear overpredicted by up to 100%. This indicates significant turbulence model error in such flows. We determined that the dominant sources of model error are missing physics in the algebraic Reynolds stress framework and the simple buoyancy production term used in industrial CFD. We suggest that future modeling efforts focus on these two sources of model error. We demonstrate that the Reynolds analogy is not the dominant source of model error.