ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Ralph Wiser, Emilio Baglietto
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1143-1166
Research Article | doi.org/10.1080/00295450.2023.2202802
Articles are hosted by Taylor and Francis Online.
Turbulent heat transfer in buoyancy-dominated flows is a challenging problem for computational fluid dynamics (CFD). Many authors attribute model error in these conditions to the Reynolds analogy. We leverage a brand-new direct numerical simulation database to evaluate the performance of several popular turbulence models in buoyant diabatic channel flow. We find that heat transfer results are relatively accurate, with a Nusselt number error less than 20%. However, the turbulent flow solution is very inaccurate, with wall shear overpredicted by up to 100%. This indicates significant turbulence model error in such flows. We determined that the dominant sources of model error are missing physics in the algebraic Reynolds stress framework and the simple buoyancy production term used in industrial CFD. We suggest that future modeling efforts focus on these two sources of model error. We demonstrate that the Reynolds analogy is not the dominant source of model error.