ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Cheng-Kai Tai, Tri Nguyen, Arsen S. Iskhakov, Elia Merzari, Nam T. Dinh, Igor A. Bolotnov
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1097-1118
Research Article | doi.org/10.1080/00295450.2023.2213286
Articles are hosted by Taylor and Francis Online.
Mixed convection of low and unitary Prandtl fluids in a vertical passage is fundamental to passive heat removal in liquid metal and gas-cooled advanced reactor designs. Capturing the influence of buoyancy in flow and heat transfer in engineering analysis is hence a cornerstone to the safety of the next-generation reactor. However, accurate prediction of the mixed convection phenomenon has eluded current turbulence and heat transfer modeling approaches, yet further development and validation of modeling methods is limited by a scarcity of high-fidelity data pertaining to reactor heat transfer. In this work, a series of direct numerical simulations was conducted to investigate the influence of buoyancy on descending flow of liquid sodium, lead, and unitary Prandtl fluid in a differentially heated channel that represents the reactor downcomer region. From time-averaged statistics, flow-opposing/aiding buoyant plumes near the heated/cooled wall distort the mean velocity distribution, which gives rise to promotion/suppression of turbulence intensity and modification of turbulent shear stress and heat flux distribution. Frequency analysis of time series also suggests the existence of large-scale convective and thermal structures rising from the heated wall. As a general trend, fluids of lower Prandtl number were found to be more susceptible to the buoyancy effect due to stronger differential buoyancy across the channel. On the other hand, the effectiveness of convective heat transfer of the three studied fluids showed a distinct trend against the influence of buoyancy. Physical reasoning on observation of the Nusselt number trend is also discussed.