ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Cheng-Kai Tai, Tri Nguyen, Arsen S. Iskhakov, Elia Merzari, Nam T. Dinh, Igor A. Bolotnov
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1097-1118
Research Article | doi.org/10.1080/00295450.2023.2213286
Articles are hosted by Taylor and Francis Online.
Mixed convection of low and unitary Prandtl fluids in a vertical passage is fundamental to passive heat removal in liquid metal and gas-cooled advanced reactor designs. Capturing the influence of buoyancy in flow and heat transfer in engineering analysis is hence a cornerstone to the safety of the next-generation reactor. However, accurate prediction of the mixed convection phenomenon has eluded current turbulence and heat transfer modeling approaches, yet further development and validation of modeling methods is limited by a scarcity of high-fidelity data pertaining to reactor heat transfer. In this work, a series of direct numerical simulations was conducted to investigate the influence of buoyancy on descending flow of liquid sodium, lead, and unitary Prandtl fluid in a differentially heated channel that represents the reactor downcomer region. From time-averaged statistics, flow-opposing/aiding buoyant plumes near the heated/cooled wall distort the mean velocity distribution, which gives rise to promotion/suppression of turbulence intensity and modification of turbulent shear stress and heat flux distribution. Frequency analysis of time series also suggests the existence of large-scale convective and thermal structures rising from the heated wall. As a general trend, fluids of lower Prandtl number were found to be more susceptible to the buoyancy effect due to stronger differential buoyancy across the channel. On the other hand, the effectiveness of convective heat transfer of the three studied fluids showed a distinct trend against the influence of buoyancy. Physical reasoning on observation of the Nusselt number trend is also discussed.