ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Cheng-Kai Tai, Tri Nguyen, Arsen S. Iskhakov, Elia Merzari, Nam T. Dinh, Igor A. Bolotnov
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1097-1118
Research Article | doi.org/10.1080/00295450.2023.2213286
Articles are hosted by Taylor and Francis Online.
Mixed convection of low and unitary Prandtl fluids in a vertical passage is fundamental to passive heat removal in liquid metal and gas-cooled advanced reactor designs. Capturing the influence of buoyancy in flow and heat transfer in engineering analysis is hence a cornerstone to the safety of the next-generation reactor. However, accurate prediction of the mixed convection phenomenon has eluded current turbulence and heat transfer modeling approaches, yet further development and validation of modeling methods is limited by a scarcity of high-fidelity data pertaining to reactor heat transfer. In this work, a series of direct numerical simulations was conducted to investigate the influence of buoyancy on descending flow of liquid sodium, lead, and unitary Prandtl fluid in a differentially heated channel that represents the reactor downcomer region. From time-averaged statistics, flow-opposing/aiding buoyant plumes near the heated/cooled wall distort the mean velocity distribution, which gives rise to promotion/suppression of turbulence intensity and modification of turbulent shear stress and heat flux distribution. Frequency analysis of time series also suggests the existence of large-scale convective and thermal structures rising from the heated wall. As a general trend, fluids of lower Prandtl number were found to be more susceptible to the buoyancy effect due to stronger differential buoyancy across the channel. On the other hand, the effectiveness of convective heat transfer of the three studied fluids showed a distinct trend against the influence of buoyancy. Physical reasoning on observation of the Nusselt number trend is also discussed.