ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Addis Lemessa Jembere, Tomasz Jakubowski
Nuclear Technology | Volume 210 | Number 6 | June 2024 | Pages 1042-1053
Research Article | doi.org/10.1080/00295450.2023.2291254
Articles are hosted by Taylor and Francis Online.
The relationship between various characteristics of postharvest vegetables and their corresponding biological surface properties is strongly interconnected, leading to a broad spectrum of properties after irradiation. The primary objective of the present study was to investigate how different doses of Ultraviolet-C (UV-C) radiation affect the mechanical properties of semifinished potato tubers derived from distinct Polish varieties, namely, Innovator, Fineziya, and Victoria. A low UV-C dose ranging from 0 to 30 mJ/cm2 was administered. The Innovator variety, when subjected to irradiation, exhibited the highest levels of compression force, cutting force, and bending force. Additionally, the irradiated samples demonstrated improved resistance to compression force, bending force, and increased weight compared to the control samples. Conversely, the control samples exhibited higher resistance to cutting load than the irradiated ones in all varieties. The analysis of variance confirmed a significant difference in compression, cutting force, and tuber weight among the treatment samples in all varieties. Furthermore, stress-strain analyses were performed and showed an elastic behavior of the Victoria variety and a higher Young’s modulus for the Innovator variety.