ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Addis Lemessa Jembere, Tomasz Jakubowski
Nuclear Technology | Volume 210 | Number 6 | June 2024 | Pages 1042-1053
Research Article | doi.org/10.1080/00295450.2023.2291254
Articles are hosted by Taylor and Francis Online.
The relationship between various characteristics of postharvest vegetables and their corresponding biological surface properties is strongly interconnected, leading to a broad spectrum of properties after irradiation. The primary objective of the present study was to investigate how different doses of Ultraviolet-C (UV-C) radiation affect the mechanical properties of semifinished potato tubers derived from distinct Polish varieties, namely, Innovator, Fineziya, and Victoria. A low UV-C dose ranging from 0 to 30 mJ/cm2 was administered. The Innovator variety, when subjected to irradiation, exhibited the highest levels of compression force, cutting force, and bending force. Additionally, the irradiated samples demonstrated improved resistance to compression force, bending force, and increased weight compared to the control samples. Conversely, the control samples exhibited higher resistance to cutting load than the irradiated ones in all varieties. The analysis of variance confirmed a significant difference in compression, cutting force, and tuber weight among the treatment samples in all varieties. Furthermore, stress-strain analyses were performed and showed an elastic behavior of the Victoria variety and a higher Young’s modulus for the Innovator variety.