ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Melissa Moreno, Danielle Redhouse, Christopher Perfetti
Nuclear Technology | Volume 210 | Number 6 | June 2024 | Pages 1015-1026
Research Article | doi.org/10.1080/00295450.2023.2274168
Articles are hosted by Taylor and Francis Online.
The Annular Core Research Reactor (ACRR) Monte Carlo N-Particle (MCNP) model is used by ACRR reactor operators and experiment designers at Sandia National Laboratories for a variety of computational calculations ranging from reactor kinetics parameter estimates and safety analyses to experimental planning. To understand the dominant source of uncertainty within the MCNP model, perturbations in temperature were applied to individual ACRR MCNP fuel rods. Fuel rod temperatures were randomly sampled from a uniform distribution from operational temperatures to quantify temperature-related uncertainty effects. Stochastic mixing was used to blend the cross sections of the desired temperatures using the MCNP continuous and Thermal Neutron Scattering Treatment [S(α,β)] libraries in ENDF/B-VII.1. This uncertainty analysis produced a 640 row × 640 column correlation and covariance matrix of the neutron energy spectra. Positive covariance was produced around the 1-MeV region and the 0.2-eV region. Correlation was found in the thermal and fast energy regions, but no correlation was observed in the slowing-down energy region because interactions in this region are not dominated by fuel.