ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Akiyuki Seki, Masanori Yoshikawa, Ryota Nishinomiya, Shoichiro Okita, Shigeru Takaya, Xing Yan
Nuclear Technology | Volume 210 | Number 6 | June 2024 | Pages 1003-1014
Research Article | doi.org/10.1080/00295450.2023.2273566
Articles are hosted by Taylor and Francis Online.
In the case of a new nuclear reactor, existing evaluation experience is limited; thus, accidents and troubles may occur as a result of such lack of experience. To deal with such situations, it is desirable to use a virtual nuclear plant to reproduce behaviors under various conditions and identify unknown anomalies from the behaviors. Then, when an abnormal situation occurs, one can quickly determine the cause of the abnormality to operate plant equipment and return the plant to a stable condition as quickly as possible. Two types of deep neural network (DNN) systems have been constructed to support the identification of unknown anomalies and the determination of their causes. One is a surrogate system that can estimate physical quantities of a nuclear power plant in a computational time of several orders less than a physical simulation model. The other is an abnormal situation identification system that can estimate the state of the disturbance causing an anomaly from physical quantities of a nuclear power plant. Both systems are trained and tested using data obtained from the analytical code for incore and plant dynamics (ACCORD), which reproduces the steady and dynamic behavior of the actual High Temperature Engineering Test Reactor (HTTR) under various scenarios. The DNN models are built by adjusting the main hyperparameters. Through these procedures, these systems are shown to be able to perform with a high degree of accuracy.