ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Samyak S. Munot, Arun K. Nayak, Jyeshtharaj B. Joshi
Nuclear Technology | Volume 210 | Number 6 | June 2024 | Pages 985-1002
Research Article | doi.org/10.1080/00295450.2023.2273565
Articles are hosted by Taylor and Francis Online.
In some nuclear reactors, under accidental conditions, core debris forms a molten pool, which is later located in a core catcher. The core catcher proposed by the authors uses special refractory material to absorb enthalpy of corium so that temperatures are within 1500 K, which is possible to cool with side cooling and top flooding. Since performing a full-scale prototypic experiment is extremely challenging and complex because of the involvement of very high temperatures and the presence of radioactive materials, it is important to develop a Computational Fluid Dynamics (CFD) model capable of simulating coolability of the melt pool with the above cooling strategy. In the present work, a CFD model was developed for the above purpose and was benchmarked with experiments conducted under simulated conditions by the authors. The experiment involved the melting of about 25 L of sodium borosilicate glass at about 1473 K and cooling it in a scaled-down core catcher model. In the presence of decay heat inside the melt pool, turbulent natural convection plays an important role in the temperature distribution inside the melt pool and on the vessel walls. For this, we used different turbulence models. Comparisons among the Standard k-ε, Shear Stress Transport (SST) k-ω, and two-dimensional (2D) Large Eddy Simulation (LES) turbulence models show that SST k-ω and 2D LES turbulences are found to be in good agreement with the experimental results for the temperature distribution in the melt pool, and SST k-ω is found to be computationally less expensive than 2D LES. In general, the CFD model is capable of simulating heat transfer with phase changes inside the heat-generating melt pool. In view of this, the model can be further extended to include cooling of the melt pool in the prototype core catcher. The evolution of crust formation has been investigated in detail using a CFD model.