ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Takashi Kodama, Hiroshi Kinuhata, Mikio Kumagai, Kazunori Suzuki, Shin-Itiro Hayashi, Shingo Matsuoka
Nuclear Technology | Volume 210 | Number 6 | June 2024 | Pages 958-984
Research Article | doi.org/10.1080/00295450.2023.2273550
Articles are hosted by Taylor and Francis Online.
Using the amount, composition, and decay power density of high-level liquid waste in a storage tank, the temperature change of the waste up to 600°C and the corresponding vapor and gas release rates of H2O, HNO3, NO2, NO, and O2 as a function of time after the loss of cooling function were obtained by the following method. The heat balance equations in and around the tank were derived, and the solution of the waste temperature change was numerically obtained using the vaporization rates of H2O and HNO3 and the generation rate of NOx, which were both obtained from the experiments using the simulated liquid waste. Utilizing the temperature versus time curve obtained from the equation, the release rates of the components described above were obtained as a function of time. This information on the progress of the accident can be used to study the Leak Path Factor of radioactive materials, especially of volatilized Ru, and further, it becomes basic information when considering accident management and suppressing the impact of a disaster.