ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Ryo Yokoyama, Masahiro Kondo, Shunichi Suzuki, Christophe Journeau, Marco Pellegrini, Koji Okamoto
Nuclear Technology | Volume 210 | Number 5 | May 2024 | Pages 884-905
Research Article | doi.org/10.1080/00295450.2023.2262255
Articles are hosted by Taylor and Francis Online.
Accomplishing the retrieval of fuel debris from Fukushima Daiichi Nuclear Power Plant (1F) Unit 3 (1F3) requires an understanding of its distribution. In this study, we performed real-scale corium spreading and sedimentation behavior analyses using Lagrangian moving particle hydrodynamics and large eddy simulation methods. These methods allowed us to calculate the spreading of corium with various shear viscosities under water conditions and to propose the best estimation for the fuel debris distribution in 1F3. To minimize uncertainties arising from unknown boundary conditions, we investigated relevant parameters through literature review. Our analyses showed that highly viscous corium tends to pile up within the pedestal region under strong convective vapor and boiling heat transfer, while low-viscosity corium spreads to the outside of the pedestal regions regardless of cooling efficiency. We identified three cooling modes based on initial shear viscosity and cooling efficiency and predicted the fuel debris distribution in 1F3 by comparing our results to those of the Tokyo Electric Power Company (TEPCO) and Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) project. The distribution estimation of highly viscous corium derived from oxidic corium is consistent with the three-dimensional reconstructed image by TEPCO and the calculated results by the OECD/NEA BSAF project.