ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Ryo Yokoyama, Masahiro Kondo, Shunichi Suzuki, Christophe Journeau, Marco Pellegrini, Koji Okamoto
Nuclear Technology | Volume 210 | Number 5 | May 2024 | Pages 884-905
Research Article | doi.org/10.1080/00295450.2023.2262255
Articles are hosted by Taylor and Francis Online.
Accomplishing the retrieval of fuel debris from Fukushima Daiichi Nuclear Power Plant (1F) Unit 3 (1F3) requires an understanding of its distribution. In this study, we performed real-scale corium spreading and sedimentation behavior analyses using Lagrangian moving particle hydrodynamics and large eddy simulation methods. These methods allowed us to calculate the spreading of corium with various shear viscosities under water conditions and to propose the best estimation for the fuel debris distribution in 1F3. To minimize uncertainties arising from unknown boundary conditions, we investigated relevant parameters through literature review. Our analyses showed that highly viscous corium tends to pile up within the pedestal region under strong convective vapor and boiling heat transfer, while low-viscosity corium spreads to the outside of the pedestal regions regardless of cooling efficiency. We identified three cooling modes based on initial shear viscosity and cooling efficiency and predicted the fuel debris distribution in 1F3 by comparing our results to those of the Tokyo Electric Power Company (TEPCO) and Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) project. The distribution estimation of highly viscous corium derived from oxidic corium is consistent with the three-dimensional reconstructed image by TEPCO and the calculated results by the OECD/NEA BSAF project.