ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Sang Hun Lee, Seung Jun Lee, Sung Min Shin, Eun-Chan Lee, Hyun Gook Kang
Nuclear Technology | Volume 210 | Number 5 | May 2024 | Pages 850-867
Research Article | doi.org/10.1080/00295450.2023.2250133
Articles are hosted by Taylor and Francis Online.
An issue regarding the incorporation of software reliability within the nuclear power plant (NPP) probabilistic risk assessment model has emerged in the licensing processes of digitalized NPPs. Since software failure induces common-cause failure of the processor modules, the reliability of the software used in the NPP safety-critical instrumentation and control systems must be quantified and verified with proper test cases and environments.
In this study, a software testing method based on the minimal cut set (MCS)–based exhaustive test case generation scheme is proposed where the software logic model is developed from available information on the software development and the MCSs that represent the necessary and sufficient conditions for the software variables’ states to produce safety software outputs are generated. The MCSs are then converted into the test cases, which can be used as inputs to the test bed to verify that the test cases produce correct outputs after software execution. The effectiveness of the proposed method is demonstrated with the safety-critical trip logic software of the APR-1400 reactor protection system. The method provides a systematic way to conduct exhaustive software testing and prove the functionality of the nuclear safety software based on the test result without uncertainties.