ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Huirui Han, Chao Zhang
Nuclear Technology | Volume 210 | Number 5 | May 2024 | Pages 836-849
Research Article | doi.org/10.1080/00295450.2023.2249710
Articles are hosted by Taylor and Francis Online.
Canada has proposed the supercritical water–cooled reactor (SCWR) concept as one of the Generation IV nuclear reactors. In the SCWR power plant, the supercritical water is heated in the reactor and then flows to the turbine directly. Therefore, knowledge of the dynamic behaviors of the system is necessary for the stable operation of the power plant. There is still a lack of study on the control system for the proposed SCWR power plant. In this study, a dynamic model for the entire SCWR power plant is constructed that includes the reactor, turbine, condenser, and feedwater pump. Based on the model, the open-loop characteristics of the system when subjected to perturbations in the inputs are analyzed. Subsequently, a feedback control strategy is adopted to regulate the outputs of the system when there are disturbances. The evaluation of the performance of the control system shows that the proposed control system can return the plant back to the operating conditions effectively.