ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Milos I. Atz, Massimiliano Fratoni
Nuclear Technology | Volume 210 | Number 5 | May 2024 | Pages 795-813
Research Article | doi.org/10.1080/00295450.2023.2246736
Articles are hosted by Taylor and Francis Online.
Nuclear fuel cycle advancements will result in new types of fissile material, including nuclear wastes, that require security and safeguards. Nuclear wastes may be more vulnerable for diversion by non-state actors, and chemical processing to recover fissile material is not an insurmountable challenge. Previous work has applied a figure of merit (FOM) to assess material attractiveness and security risks. This analysis applies the material attractiveness FOM to wastes produced by fuel cycles from the Fuel Cycle Evaluation and Screening (FCES) study. Two aspects of security risk are studied: (1) the time before the fissile material in the waste becomes attractive and (2) the number of waste packages required to obtain a critical mass of fissile material. Two fuel cycles are presented to highlight detailed results: (1) once-through use of low-enriched U in light water reactors (LWRs) and (2) continuous recycle of Pu in sodium fast reactors (SFRs). Increasing LWR used nuclear fuel (UNF) package loading increases the time to attractiveness, but the larger packages contain enough Pu for multiple critical masses. The high-level waste (HLW) from processing the SFR fuels has similar FOM behavior but longer time to attractiveness due to the concentration of fission products. More HLW packages are required to obtain a critical mass; that number can be further increased by increasing the separation efficiency. Extended to all FCES fuel cycles, the minimum time before attractiveness is generally lower for UNF than for HLW because radioactivity is concentrated in HLW. For nearly all fuel cycles that produce UNF, only one package is required to recover enough fissile material for a critical mass. Notably, some advanced fuel cycles produce HLW, of which only two packages need to be recovered to obtain a critical mass, even when the target fissile material is recycled. Going forward, an assessment of the security risks posed by fissile material in nuclear wastes will need to quantify the challenge posed by separations. Ultimately, the assessment could inform security and response measures; whether any of the observations might affect these measures could be an area for future work. Finally, future analysis could study whether different fuel cycle wastes are more attractive for use in radiological dispersal devices or radiological exposure devices.