ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Edgar Hernández-Palafox, Pablo Ruiz-López, Luis Héctor Hernández Gómez, Alejandra Armenta-Molina, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernández, Luis Alberto Arenas-Magos
Nuclear Technology | Volume 210 | Number 5 | May 2024 | Pages 781-794
Research Article | doi.org/10.1080/00295450.2023.2244314
Articles are hosted by Taylor and Francis Online.
The evaluation of the structural integrity of a vertical cask that is used for spent nuclear fuel dry storage is reported. The cask diameter and height are 3.566 m (140 in.) and 5.28 m (207.75 in.), respectively. The analysis focuses on such a cask being impacted by a commercial airplane. The dry storage container standards, which are under evaluation and approval by the U.S. Nuclear Regulatory Commission, are considered. The storage container inner basket is made of a stainless steel plate cylinder. It is located within an outer shell. The last one is manufactured with concrete and has internal and external steel liners. The commercial airplane considered in this analysis has a length of 40.39 m (132 ft, 6 in.). Its wingspan and height are 35.23 m (115 ft, 7 in.) and 11.98 m (39 ft, 4 in.), respectively. Its take-off weight is 81 090 kg (178 773 lb).
An explicit analysis with the finite element method is carried out. The impact angles were 0, 30, 45, and 60 deg with respect to the horizontal. The mesh of the domain has 1 104 229 hexahedral elements and 1 516 156 nodes. Initially, all the structures are considered without restrictions and free of stresses. The vertical container for dry storage is at rest on a rigid concrete base. The aircraft velocity is 234 m/s or 842 km/h (523 mph). The impact event is simulated in an interval of 0.03 s. The maximum principal stress fields show that there are points at the lid of the container that are above the elastic limit and the ultimate strength. Under these conditions, brittle failure is expected.