ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
A. Meli, S. Bassini, C. Ciantelli, A. Fiore, M. Angiolini, M. Tarantino
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 758-771
Research Article | doi.org/10.1080/00295450.2023.2257547
Articles are hosted by Taylor and Francis Online.
The lead-cooled fast reactor (LFR) is one of the most promising Generation-IV nuclear designs currently under development in Europe, China, and the United States. LFRs can ensure enhanced performance and minimal waste production thanks to a closed fuel cycle, but they also have some issues that need to be addressed. One of the most critical is the long-term degradation process initiated in structural materials exposed to liquid Pb. The present state of the art has shown that commercial austenitic steels, such as American Iron and Steel Institute 316L and 15-15Ti can be adopted as structural materials in Pb environments up to 480°C, beyond which they start to experience the dissolution of constituting alloying elements (Ni, Cr, and Fe) if not protected by a coating or by surface modification.
In more recent years, a lot of research effort has been done in order to develop new coating technologies and new base materials for operation with liquid Pb at higher temperatures. Among the newest alloys, alumina-forming austenitic (AFA) steels have gained interest in the research community because of their promising corrosion resistance results even at temperatures of 600°C. In this framework, an experimental campaign has been run at the Research Center ENEA of Brasimone that aims to characterize the behavior of two different AFA steels (with low and high Ni content in their composition) in static Pb at 650°C and 750°C with a moderate low oxygen concentration (10−6 wt %). After exposure, the AFA steels were characterized from the point of view of the morphology and composition, and the results are presented and discussed here.