ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Cristiano Ciurluini, Vincenzo Narcisi, Ivan Di Piazza, Fabio Giannetti
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 713-724
Research Article | doi.org/10.1080/00295450.2023.2222248
Articles are hosted by Taylor and Francis Online.
A computational campaign was carried out at the Department of Astronautical, Electrical and Energy Engineering of Sapienza University of Rome aiming at the assessment of RELAP5-3D© capabilities for subchannel analysis. More specifically, the investigation involved a lead-bismuth-eutectic–cooled wire-spaced fuel pin bundle and compared simulation outcomes with experimental data coming from the NAtural CIrculation Experiment-Upgraded (NACIE-UP) facility, hosted at ENEA Brasimone Research Center. Thermal-hydraulic nodalization of the facility was developed with detailed subchannel modeling of the fuel pin simulator (FPS). Three different methodologies for the subchannel simulation were investigated, increasing step by step the complexity of the thermal-hydraulic model. In the simplest approach, the subchannels were modeled one by one. In addition, mass transfer between them was considered thanks to multiple cross junction components, realizing the hydraulic connection between adjacent subchannels. In this case, mass transfer depends on the pressure gradient and hydraulic resistance only, ignoring the turbulent mixing promoted by the wire-wrapped subassembly. Simulation results were not satisfactory, and an improvement was introduced in the second approach. In this case, several control variables calculate at each time step the energy transfer between adjacent control volumes associated with the turbulent mixing induced by the wires. This energy is transferred using ad hoc heat structures (HSs), where the boundary conditions are calculated by the control variables. The present model highlighted good capabilities in the prediction of the radial temperature distribution within the FPS, considerably reducing disagreement with experimental data. Finally, the influence of radial conduction within the fluid domain was assessed, introducing further HSs. Although this most complex model provided the best estimation of the experimental acquisition, the improvements given by radial conduction were not so relevant to justify the correspondent increase of the computational cost.