ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
P. Cioli Puviani, I. Di Piazza, R. Marinari, R. Zanino, M. Tarantino
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 692-712
Research Article | doi.org/10.1080/00295450.2023.2215682
Articles are hosted by Taylor and Francis Online.
In the framework of the ALFRED research and development program, the ATHENA facility will be constructed for thermal-hydraulic analysis of full-scale ALFRED components and systems. The source system of the facility is the core simulator, which aims to be representative of an ALFRED average fuel assembly. Computational fluid dynamics (CFD) codes are gaining attention for the analysis of complex systems in pool-type reactors since they are able to reproduce three-dimensional phenomena.
In this paper, a multiscale approach based on porous media is proposed to reduce the computational cost of the core simulator CFD model. The multiscale approach starts with the detailed simulation of the infinite lattice domain of the fuel assembly to characterize the porous media hydraulic behavior. Then the porous media are applied in the system model. Three different approaches are investigated: (1) adopting a single porous media for the entire fuel assembly, (2) representing the bundle with two porous domains, and (3) adopting the so-called hybrid medium. The results have been compared with the reference detailed CFD simulation for performance evaluation.
The first step of the analysis is the application of the multiscale approach on the CIRCE fuel pin simulator to carry out a turbulence model validation against experimental data and a comparison of the three approaches with a proven CFD model. Then the approach is applied on the ATHENA core simulator exploiting the CIRCE results. The results obtained with the porous media models are compared with a detailed CFD simulation of the core simulator to evaluate the performance of the three approaches. Eventually, the best solution is applied on a model of the entire ATHENA core simulator integrated with the feeding region. The model is tested also in transient conditions. The numerical experiment demonstrates the effectiveness of the multiscale approach in reducing the computational cost while maintaining high accuracy in representing the quantities of interest.