ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Sung Jin Lee, Michael Ickes, Jeffrey L. Arndt, Michael Epstein, Asfaq Patel, Paolo Ferroni
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 666-680
Research Article | doi.org/10.1080/00295450.2023.2197667
Articles are hosted by Taylor and Francis Online.
Westinghouse is developing a lead-cooled fast reactor (LFR) as its next-generation utility-scale nuclear power plant. To support its development, Westinghouse and its partners are building 10 test facilities to demonstrate key LFR phenomena, materials, and components in liquid lead. These test infrastructures are distributed across several institutions, and this paper focuses on those located within Westinghouse. It describes three state-of-the-art test rigs being installed in the Westinghouse facility in Springfields, United Kingdom, to test materials in liquid lead and to investigate key LFR phenomena, which will also be used to validate modeling and simulation tools. These facilities address material corrosion/erosion testing (MELECOR), lead freezing and under-lead viewing testing (LEFREEZ), and primary heat exchanger failure testing (LEWIN). This paper also describes the first liquid-lead test system to become operational at Westinghouse at the company’s site in Churchill, Pennsylvania, i.e., a test rig named HELMET to conduct tensile tests in a molten-lead environment to investigate the potential susceptibility of LFR candidate materials to liquid-metal embrittlement.