ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Pierdomenico Lorusso, Ivan Di Piazza, Daniele Martelli, Mariano Tarantino
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 644-665
Research Article | doi.org/10.1080/00295450.2023.2189903
Articles are hosted by Taylor and Francis Online.
Within the roadmap for the technological development of Generation IV reactors, the HORIZON2020 European Union–funded Partitioning And Transmuter Research Initiative in a Collaborative Innovation Action (PATRICIA) project was launched to support innovative solutions for the development of the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA) accelerator-driven system concept and lead fast reactor technologies in general. The ENEA contributes to the project by involving the experimental infrastructures of the Brasimone Research Center (Italy). In particular, a large-scale pool-type facility named CIRColazione Eutettico (CIRCE), using lead-bismuth eutectic as the primary coolant and pressurized water as the secondary fluid, is under refurbishment with the implementation of a novel test section (TS) named Thermal-hydraulic HElical Tubes Innovative System (THETIS) to be installed in the CIRCE main vessel. The new TS will include a vertical mechanical pump for primary coolant circulation and a new prototypical helical coil steam generator (HCSG). This steam generator concept turns out to be very promising for nuclear power plants since the helical geometry is very compact and it assures high power removed, taking up a minimum amount of space. Accordingly, with the aims of the project, the experimental tests in CIRCE-THETIS will focus on (1) investigating the thermal-hydraulic behavior of the system in steady-state operation (forced circulation regime) during operational and accidental transients (postulated scenarios) and in a natural circulation regime considering as heat sink the HCSG (acting as a decay heat removal system) and the reactor vessel auxiliary cooling system in stand-alone or coupled operation and (2) characterizing the performance of the HCSG. The present work presents the layout of the CIRCE-THETIS facility at the end of the final design phase, describing in detail the main components of the TS, along with the instrumentation installed. Focus will be given to the HCSG mock-up, for which pretest analyses using the system thermal-hydraulic code RELAP5/Mod3.3 and a computational fluid dynamics code have been carried out to support the design of the component and to evaluate its thermal-hydraulic performance under the operative conditions foreseen during the experiments.