ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Vikram Rathore, Lorenzo Senis, Stefan Jarl Holm, Erik Andersson Sundén, Ane Håkansson, Mounia Laassiri, Peter Dendooven, Peter Andersson
Nuclear Technology | Volume 210 | Number 3 | March 2024 | Pages 532-541
Research Article | doi.org/10.1080/00295450.2023.2236882
Articles are hosted by Taylor and Francis Online.
Postirradiation examination of nuclear fuel is routinely performed to characterize the important properties of current and future fuel. Gamma emission tomography is a proven noninvasive technique for this purpose. Among various measurement elements of the technique, a gamma-ray detector is an important element whose spectroscopic abilities and detection efficiency affect the overall results. Finding a combination of high detection efficiency and excellent energy resolution in a single detector is often a challenge. We have designed a novel planar segmented high-purity germanium detector that offers simultaneous measurement in six lines of sight with excellent energy resolution. The simultaneous detection ability enables faster data acquisition in a tomographic measurement, which may facilitate achieving higher spatial resolution. In this work, we have demonstrated the first use of the detector by performing a full tomographic measurement of mockup fuel rods. Two methods of detector data analysis were used to make spectra, and the images (tomograms) were reconstructed using the filtered back projection algorithm. The reconstructed images validate the successful use of the detector for tomographic measurement. The use of the detector for real fuel measurement is being planned and will be performed in the near future.