ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Krishna Moorthi Sankar, James R. Keiser, Dino Sulejmanovic, Tracie M. Lowe, Preet M. Singh
Nuclear Technology | Volume 210 | Number 3 | March 2024 | Pages 391-408
Research Article | doi.org/10.1080/00295450.2023.2229176
Articles are hosted by Taylor and Francis Online.
Reliable performance of structural alloys is essential for the successful implementation of Generation-IV fluoride salt–cooled high-temperature reactors (FHRs). Most FHR designs are considering molten salt (2LiF-BeF2), or FLiBe, as a primary coolant or fuel carrier. The main corrosion mechanism for alloys exposed to molten fluoride salts is the selective dealloying of active alloying elements. Alloy composition has a significant effect on their high-temperature mechanical properties, but also affects their corrosion behavior. Although Hastelloy-N and its variants show good corrosion resistance compared to higher Cr-containing Ni- or Fe-based alloys, the mechanical properties of these alloys degrade quickly at temperatures above ~600°C. Twelve Ni-based or Fe-based alloys were selected due to their high temperature stability or their low Cr alloy composition and tested for their corrosion behavior in FLiBe. The results show that the mode and the extent of alloy degradation by selective dissolution mechanism corelates well with the overall alloy composition, and not just the concentration of active elements. It was found that there was good correlation between weight loss of the tested alloys and the ratio of major active elements (Cr, Mn) to that of the more noble alloying elements (Ni, Mo).