ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
A. Fayet, S. Béjaoui, T. Cadiou, J. Perez-Manes, E. Deveaux, A. Vernier, V. D’Ambrosi, J. Sercombe, C. Nonon-Solaro, G. Bignan, C. Koren, S. Mimouni, A. Ambard, B. Rossaert, P. Gouat, B. Boer, R. Wouter-Bosch
Nuclear Technology | Volume 210 | Number 2 | February 2024 | Pages 354-377
Research Article | doi.org/10.1080/00295450.2023.2271222
Articles are hosted by Taylor and Francis Online.
To refine knowledge about pressurized water reactor fuel melting, the Power to Melt and Maneuverability (P2M) project in the Framework for Irradiation Experiments II (FIDES-II) managed by the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development aims to perform two irradiation tests to reach fuel centerline partial melting using instrumented experimental fuel rodlets irradiated in a pressurized water capsule (PWC) of the Belgian Reactor 2 (BR2) [Studiecentrum voor Kernenergie (SCK CEN), Belgium]. Prior to these experiments, two preliminary tests will be performed in the PWC for qualification purpose toward safety. The experimental rodlets will be instrumented with a fuel centerline thermocouple in the lower part of the fuel and a pressure sensor (PS) in the upper part. An objective of the P2M experiments is to determine the amount of fission gas released from the fuel thanks to the PS measurement. The plenum pressure evolution is known from the measurement, and knowledge of the gas plenum temperature is required to determine the amount of fission gas released from the fuel to the plenum. The gas plenum temperature will depend on natural convection of the PWC coolant, and no temperature measurement will be possible within this gap during the test. This paper describes the setting up of a model of the BR2 PWC equipped with the P2M rodlets based on the coupled NEPTUNE_CFD (multiphase fluid calculation code) and SYRTHES (solid thermal module) simulation tools. Simulations performed thanks to this model allow assessment of the thermal-hydraulic (TH) behavior of the pressurized water in the capsule and the thermal behavior of the rodlet, in particular, regarding the temperature of the gas located in the plenum. For consistency of the results, computations presented in this paper were performed using a single and consistent set of TH models. A mesh sensitivity analysis was carried out for all the studied cases. Simulation results related to the water capsule behavior were found to be in good agreement with the available experimental data. The gas plenum temperature results obtained from this study will be used to assess the fission gas release during the test from the plenum pressure measurements. Overall experimental validation of fission gas release during the test will be possible after the transient test in BR2 based on the postirradiation examination program foreseen on the rodlets at the LECA-STAR facility [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) Cadarache, France].