ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Afiqa Mohamad, Yutaka Udagawa
Nuclear Technology | Volume 210 | Number 2 | February 2024 | Pages 245-260
Research Article | doi.org/10.1080/00295450.2023.2185061
Articles are hosted by Taylor and Francis Online.
In the Power to Melt and Maneuverability (P2M) project, a simulation exercise on two past power ramp experiments, xM3 on a medium-burnup rod and HBC4 on a high-burnup rod, was performed with the fuel performance code FEMAXI-8 to investigate fuel behavior under high-power and high-temperature conditions toward centerline fuel melting. In order to treat fuel melting, empirical melting temperature models have been incorporated into the FEMAXI-8 code. The present analysis gives reasonable predictions not only on cladding deformation but also on the fuel melting behavior of the HBC4 rod in which the UO2 liquidus temperature was reached during the transient. On the other hand, model improvement appears to be needed for a more accurate treatment of the fuel melting behavior of the xM3 rod in which the fuel center temperature reached the solidus line, whereas it may have not reached the liquidus line. A reasonable agreement of estimated fission gas release (FGR) with the measurement suggested that the high-temperature FGR at the given conditions is essentially a temperature-dependent phenomenon rate limited primarily by thermally activated elementary processes, such as fission gas diffusion.