ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
G. Bonny, P. Blanpain, D. Rozzia, S. Billiet, M. Verwerft, B. Boer
Nuclear Technology | Volume 210 | Number 2 | February 2024 | Pages 216-231
Research Article | doi.org/10.1080/00295450.2023.2264505
Articles are hosted by Taylor and Francis Online.
In this work, a detailed reevaluation of a past power-to-melt experiment performed within the so-called High Burnup Chemistry project is provided. A pressurized water reactor–type UO2 fuel rod was base irradiated in Belgian Reactor 3 up to a peak pellet burnup of 60 MWd/kgU. After base irradiation, the rod experienced a power ramp experiment in Belgian Reactor 2, reaching a ramp terminal level of 70 kW/m (later adjusted to 66 kW/m). Extensive post-irradiation examination was performed after both the base irradiation and the power ramp experiment. After the power ramp experiment, rod cladding failure and local fuel melting were observed. Fuel melting was observed in an 85-mm region around the peak power pellet with a normalized molten fuel radius in the range r/r0 = 0.20 to 0.27. The threshold power for melting derived from this experiment was 63.0 ± 4.4 kW/m.