ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Hossein Hashemi-Jozani, Khalil Moshkbar-Bakhshayesh, Soroush Mohtashami, Behzad Rokhbin
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 180-188
Note | doi.org/10.1080/00295450.2023.2224131
Articles are hosted by Taylor and Francis Online.
The computerized simulation of the reactor core is one of the significant steps necessary for designing a nuclear power plant. So far, very suitable Monte Carlo–based codes have been developed (e.g., MCNP, TRIPOLI, KENO, OpenMC, etc.) for the neutronic simulation of the reactor core. In this study, an approach based on Geant4, as an extendable code with the capability to provide a comprehensive reactor core design tool, is developed to calculate the effective multiplication factor (keff) and neutron flux distribution. A combination of the Geant4 code and the NJOY code is applied to calculate the temperature-dependent cross-section library. The C5G7-1D, the Godiva critical facility, and the Jordan subcritical reactor are examined as a benchmarks/case study. The results of the calculation of keff (i.e., relative error < 0.1%) and flux distribution (i.e., relative error <3%) are in very good agreement with the calculation results of the MCNP code and the experimental results. The extensions for the calculation of thermodynamic/thermohydraulic effects as well as the calculation of electron/photon transport and reactor dynamics are under development and will be reported as subsequent results.