ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Hossein Hashemi-Jozani, Khalil Moshkbar-Bakhshayesh, Soroush Mohtashami, Behzad Rokhbin
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 180-188
Note | doi.org/10.1080/00295450.2023.2224131
Articles are hosted by Taylor and Francis Online.
The computerized simulation of the reactor core is one of the significant steps necessary for designing a nuclear power plant. So far, very suitable Monte Carlo–based codes have been developed (e.g., MCNP, TRIPOLI, KENO, OpenMC, etc.) for the neutronic simulation of the reactor core. In this study, an approach based on Geant4, as an extendable code with the capability to provide a comprehensive reactor core design tool, is developed to calculate the effective multiplication factor (keff) and neutron flux distribution. A combination of the Geant4 code and the NJOY code is applied to calculate the temperature-dependent cross-section library. The C5G7-1D, the Godiva critical facility, and the Jordan subcritical reactor are examined as a benchmarks/case study. The results of the calculation of keff (i.e., relative error < 0.1%) and flux distribution (i.e., relative error <3%) are in very good agreement with the calculation results of the MCNP code and the experimental results. The extensions for the calculation of thermodynamic/thermohydraulic effects as well as the calculation of electron/photon transport and reactor dynamics are under development and will be reported as subsequent results.