ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jacob Keese, D. Keith Hollingsworth
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 165-179
Research Article | doi.org/10.1080/00295450.2023.2216989
Articles are hosted by Taylor and Francis Online.
A more advanced form of nuclear propulsion known as centrifugal nuclear thermal propulsion (CNTP) promises increased propellant temperatures that could lead to a high specific impulse in the range of 1500 to 1800 s with hydrogen. This design has the potential of opening opportunities to perform missions to destinations much farther than currently possible. However, the CNTP concept poses many engineering challenges due to the nuclear fuel operating at high temperature in a liquid phase. A one-dimensional, steady-state thermal model of the liquid uranium fuel has been constructed to understand the limitations of this concept and the potential design considerations. Three related basic designs are considered, and key design parameters are varied in order to predict the temperature levels and void fractions across the liquid uranium pool.