ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Jacob Keese, D. Keith Hollingsworth
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 165-179
Research Article | doi.org/10.1080/00295450.2023.2216989
Articles are hosted by Taylor and Francis Online.
A more advanced form of nuclear propulsion known as centrifugal nuclear thermal propulsion (CNTP) promises increased propellant temperatures that could lead to a high specific impulse in the range of 1500 to 1800 s with hydrogen. This design has the potential of opening opportunities to perform missions to destinations much farther than currently possible. However, the CNTP concept poses many engineering challenges due to the nuclear fuel operating at high temperature in a liquid phase. A one-dimensional, steady-state thermal model of the liquid uranium fuel has been constructed to understand the limitations of this concept and the potential design considerations. Three related basic designs are considered, and key design parameters are varied in order to predict the temperature levels and void fractions across the liquid uranium pool.