ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
P. D. Vaswani, P. K. Tamboli, Debraj Chakraborty
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 126-136
Research Article | doi.org/10.1080/00295450.2023.2214662
Articles are hosted by Taylor and Francis Online.
This paper considers an optimized full state feedback (FSF) optimal controller for bulk power control of a 700-MW(electric) pressurized heavy water reactor (PHWR) that minimizes the controller norm to reduce the effect of disturbances. Lyapunov’s linear matrix inequalities (LMIs) have been considered for stability of the model. For the closed loop, these inequalities, which become nonlinear in the unknowns, are converted to LMIs by a suitable variable substitution. The controller’s optimization is achieved by minimizing the upper bound of the state feedback vector’s norm. As a result of this optimization, the controller gain is reduced, which reduces the effect of the disturbance input to the system. We study the stability of the closed loop system and the nonlinear transient performance using the state feedback. We demonstrate that the proposed controller’s transient performance is superior to that of a nonoptimized controller when compared to a conventional proportional-derivative controller. The designed controller has a norm that is about five orders lower than that obtained without optimization while still providing acceptable transient performance.