ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Pedro Mena, R. A. Borrelli, Leslie Kerby
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 112-125
Research Article | doi.org/10.1080/00295450.2023.2214257
Articles are hosted by Taylor and Francis Online.
Concerns over cybersecurity in critical systems have grown significantly over the last decade. The increase in the successful attacks against infrastructure, major corporations, and governments has led to major investment in mitigating and preventing cyberattacks. At the same time, there has been a significant interest in utilizing data in operations, with machine learning applications becoming a popular area of study. One industry exploring machine learning applications is the nuclear industry. Because of the sensitive nature of nuclear systems, the question if attacks on nuclear data can be detected has begun to take urgency. This study explores the use of autoencoders to detect anomalies in nuclear data that could be potentially used to evaluate the operating status of a nuclear system. Data from a generic pressurized water reactor simulator used in a previous study to diagnose transients was used to train an autoencoder model using Keras. A separate portion of these data was altered by adding statistical noise for validation. Four different levels of noise were used in this experiment. Once the autoencoder was trained, a threshold was calculated using the average mean square error of the predictions and the standard deviation from that loss. Points above the threshold were classified as anomalies while points below were considered unaltered. For the initial level of noise, the model was able to score near perfect in recall, capturing all but 13 of the 13 884 altered points. However, in terms of precision, the model misclassified a number of unaltered points as altered, resulting in a score of 73.76%. To test the sensitivity of the model, the amount of noise was reduced three times, and as expected, the performance of the model worsened with each reduction. Still, the high performance in identifying altered points for higher levels of noise is an encouraging first step in developing anomaly detection systems for nuclear data.