ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Pedro Mena, R. A. Borrelli, Leslie Kerby
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 112-125
Research Article | doi.org/10.1080/00295450.2023.2214257
Articles are hosted by Taylor and Francis Online.
Concerns over cybersecurity in critical systems have grown significantly over the last decade. The increase in the successful attacks against infrastructure, major corporations, and governments has led to major investment in mitigating and preventing cyberattacks. At the same time, there has been a significant interest in utilizing data in operations, with machine learning applications becoming a popular area of study. One industry exploring machine learning applications is the nuclear industry. Because of the sensitive nature of nuclear systems, the question if attacks on nuclear data can be detected has begun to take urgency. This study explores the use of autoencoders to detect anomalies in nuclear data that could be potentially used to evaluate the operating status of a nuclear system. Data from a generic pressurized water reactor simulator used in a previous study to diagnose transients was used to train an autoencoder model using Keras. A separate portion of these data was altered by adding statistical noise for validation. Four different levels of noise were used in this experiment. Once the autoencoder was trained, a threshold was calculated using the average mean square error of the predictions and the standard deviation from that loss. Points above the threshold were classified as anomalies while points below were considered unaltered. For the initial level of noise, the model was able to score near perfect in recall, capturing all but 13 of the 13 884 altered points. However, in terms of precision, the model misclassified a number of unaltered points as altered, resulting in a score of 73.76%. To test the sensitivity of the model, the amount of noise was reduced three times, and as expected, the performance of the model worsened with each reduction. Still, the high performance in identifying altered points for higher levels of noise is an encouraging first step in developing anomaly detection systems for nuclear data.