ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. K. Bekmuldin, М. K. Skakov, V. V. Baklanov, А. V. Gradoboev, A. S. Akayev, K. O. Toleubekov
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 46-54
Research Article | doi.org/10.1080/00295450.2023.2226539
Articles are hosted by Taylor and Francis Online.
During the development of a severe accident at a nuclear power plant (NPP), corium is formed—a melt of core materials. A distinctive feature of corium, due to the content of fuel elements in its composition, is the presence of decay heat, which makes a significant contribution to the nature of the interaction of the corium melt with the structural materials of the reactor plant. In this regard, the decay heat should be taken into account when conducting computational studies and physical experiments. For this reason, certain requirements are imposed on the methods of simulating decay heat in the corium prototype, which relate to both the uniformity of the volume distribution and its intensity.
This paper presents the results of calibration experiments to substantiate the operability of the induction heating system of the Lava-B test bench, which is used to simulate decay heat in the study of processes occurring during an accident with the NPP core meltdown. So, in order to obtain optimal characteristics of the heating system, a series of experiments was conducted on heating the graphite block in the experimental section of the Lava-B test bench. In the experiments, the capacitance of the used oscillating circuit capacitor banks and the electrical power on the inductor varied. As a result of the analysis of the data obtained, the most optimal parameters of the inductor-load simulator system were determined. In general, the performed experiments confirmed the operability of the induction heater and the possibility of its use in experimental studies of the interaction of corium with the various structural elements of the NPP reactor core at the Lava-B test bench.