ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
C. Colterjohn, S. Nagasaki, Y. Fujii
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 23-45
Research Article | doi.org/10.1080/00295450.2023.2217390
Articles are hosted by Taylor and Francis Online.
This paper performs a detailed analysis of the optimized Ontario power mix under impending load and emissions constraints with the consideration of small modular reactor (SMR) deployment. The target of minimizing the total cost of the 2055 power mix while retaining real-world energy requirements was achieved using a semidynamic, recursive linear optimization model with hourly time resolution for the accurate consideration of wind and photovoltaic variable renewable energy. Utilizing IBM’s ILOG CPLEX Optimization Studio’s Flow Control method, dynamic factors such as forecasted demand growth, increasing capacity installations, learning curve applications, and reactor refurbishment and decommissioning schedules were applied to the modeling scenarios. Optimized scenarios have demonstrated that SMR-based capacity should play a vital role in the provincial energy mix in order to minimize cost while meeting emissions reduction goals and responding to increasing demand. Simulations show ideal cost reductions when approximately one-third of generated energy is produced by SMRs in the future energy mix and that the absence of SMRs may lead to up to 29% higher spending. Additional cases have considered the benefits of early SMR investment and direct SMR-CANDU cost comparisons.