ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
C. Colterjohn, S. Nagasaki, Y. Fujii
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 23-45
Research Article | doi.org/10.1080/00295450.2023.2217390
Articles are hosted by Taylor and Francis Online.
This paper performs a detailed analysis of the optimized Ontario power mix under impending load and emissions constraints with the consideration of small modular reactor (SMR) deployment. The target of minimizing the total cost of the 2055 power mix while retaining real-world energy requirements was achieved using a semidynamic, recursive linear optimization model with hourly time resolution for the accurate consideration of wind and photovoltaic variable renewable energy. Utilizing IBM’s ILOG CPLEX Optimization Studio’s Flow Control method, dynamic factors such as forecasted demand growth, increasing capacity installations, learning curve applications, and reactor refurbishment and decommissioning schedules were applied to the modeling scenarios. Optimized scenarios have demonstrated that SMR-based capacity should play a vital role in the provincial energy mix in order to minimize cost while meeting emissions reduction goals and responding to increasing demand. Simulations show ideal cost reductions when approximately one-third of generated energy is produced by SMRs in the future energy mix and that the absence of SMRs may lead to up to 29% higher spending. Additional cases have considered the benefits of early SMR investment and direct SMR-CANDU cost comparisons.