ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Industry Update—November 2025
Here is a recap of recent industry happenings:
TerraPower’s Natrium plans for Wyoming, Utah move forward
TerraPower has reported a number of developments related to its Natrium sodium fast reactor project. In the project’s fifth round of procurement awards, the company awarded three supplier contracts to support the Natrium plant’s construction, which is underway in Kemmerer, Wyo., and is expected to be completed in 2030. AvanTech will design advanced sodium processing system modules and supporting skids for the Natrium plant, as well as fabricate and deliver the test and fill facility cold trap skid. Structural Integrity Associates will design and fabricate the sodium cover gas gamma spectroscopy analysis cabinet, a radiation monitoring system. PAR Systems will design and fabricate the pool handling machine, a specialized crane system for spent fuel pool operations.
Una Baker, Marisol Garrouste, Sooyoung Choi, Gabriel J. Soto, Ross Snuggerud, Brendan Kochunas, Ben Lindley
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 1-22
Research Article | doi.org/10.1080/00295450.2023.2216973
Articles are hosted by Taylor and Francis Online.
The NuScale small modular reactor (SMR) has been modeled using the Virtual Environment for Reactor Applications multiphysics environment and the results compared with the publicly reported data in the Design Certification Application. The results show an excellent agreement for the compared axial and radial power distributions, temperature coefficients of reactivity, boron and control rod worths, and fast neutron flux. This NuScale model is then used to investigate the effect of different operational modes on reactor components to determine how the flexible load-following operation may affect control rod and reactor pressure vessel (RPV) lifetimes. The control rod degradation is confirmed to primarily affect the silver-indium-cadmium rod tip. The degradation rate is observed to follow a nonlinear function of core power level where the increase in degradation decreases with insertion depth.
For the variation in core power levels expected with current load-following schemes, the total control rod degradation is found to be mild, at 5% to 10% of usable life per cycle for a reactor operating at <80% power. Nonetheless, this enables load-following strategies to be confirmed and/or modified to ensure that control rods do not need to be replaced during the 60+ year life of the reactor. The RPV degradation was found to be almost directly proportional to the core power level and was not overly sensitive to flux shape perturbations. Future work is planned using these damage functions to optimize operation over multiple NuScale SMR units and to develop strategies for prognostics and health management.