ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Una Baker, Marisol Garrouste, Sooyoung Choi, Gabriel J. Soto, Ross Snuggerud, Brendan Kochunas, Ben Lindley
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 1-22
Research Article | doi.org/10.1080/00295450.2023.2216973
Articles are hosted by Taylor and Francis Online.
The NuScale small modular reactor (SMR) has been modeled using the Virtual Environment for Reactor Applications multiphysics environment and the results compared with the publicly reported data in the Design Certification Application. The results show an excellent agreement for the compared axial and radial power distributions, temperature coefficients of reactivity, boron and control rod worths, and fast neutron flux. This NuScale model is then used to investigate the effect of different operational modes on reactor components to determine how the flexible load-following operation may affect control rod and reactor pressure vessel (RPV) lifetimes. The control rod degradation is confirmed to primarily affect the silver-indium-cadmium rod tip. The degradation rate is observed to follow a nonlinear function of core power level where the increase in degradation decreases with insertion depth.
For the variation in core power levels expected with current load-following schemes, the total control rod degradation is found to be mild, at 5% to 10% of usable life per cycle for a reactor operating at <80% power. Nonetheless, this enables load-following strategies to be confirmed and/or modified to ensure that control rods do not need to be replaced during the 60+ year life of the reactor. The RPV degradation was found to be almost directly proportional to the core power level and was not overly sensitive to flux shape perturbations. Future work is planned using these damage functions to optimize operation over multiple NuScale SMR units and to develop strategies for prognostics and health management.