ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Eymon Lan, Shanbin Shi
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 2016-2029
Research Article | doi.org/10.1080/00295450.2022.2157661
Articles are hosted by Taylor and Francis Online.
For National Aeronautics and Space Administration’s space mission planning, tons of cryogenic propellants need to be stored under microgravity conditions. Because of heat leaks into cryogenic propellant tanks, thermal stratification develops from lack of natural convection leading to boil-off of precious propellants. A thermodynamic vent system operates with a jet mixer to reduce thermal gradients within the fluid and control pressure inside the tank. In this work, a Reynolds-averaged Navier-Stokes–based computational fluid dynamics model was developed to study the fluid dynamics of jet-induced mixing and jet impingement on the large ullage bubble in the Tank Pressure Control Experiment (TPCE) under microgravity conditions. First, the computational model was benchmarked against existing experimental flow visualization data on the jet impingement. The jet mixing was then compared quantitatively with correlations for the jet radius to analyze the volumetric flow rate of the jet due to entrainment in the near field of the nozzle. The findings show that the confinement of the jet due to the ullage and the walls contributes positively to the jet entrainment rate, thus increasing the jet volumetric flow rate. In addition, the turbulence parameters are plotted to study the flow development for the TPCE case where the jet does not penetrate the ullage. Last, the model was used to determine the jet Weber number for penetration on the ullage bubble by varying jet inlet velocities. Numerical results show that the jet can penetrate the ullage when the jet Weber number is greater than 1.3.