ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yang Liu, Nam Dinh, Xiaodong Sun, Rui Hu
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 2002-2015
Research Article | doi.org/10.1080/00295450.2022.2162792
Articles are hosted by Taylor and Francis Online.
Multiphase Computational Fluid Dynamics (MCFD) based on the two-fluid model is considered a promising tool to model complex two-phase flow systems. MCFD simulation can predict local flow features without resolving interfacial information. As a result, the MCFD solver relies on closure relations to describe the interaction between the two phases. Those empirical or semi-mechanistic closure relations constitute a major source of uncertainty for MCFD predictions.
In this paper, we leverage a physics-informed uncertainty quantification (UQ) approach to inversely quantify the closure relations’ model form uncertainty in a physically consistent manner. This proposed approach considers the model form uncertainty terms as stochastic fields that are additive to the closure relation outputs. Combining dimensionality reduction and Gaussian processes, the posterior distribution of the stochastic fields can be effectively quantified within the Bayesian framework with the support of experimental measurements. As this UQ approach is fully integrated into the MCFD solving process, the physical constraints of the system can be naturally preserved in the UQ results. In a case study of adiabatic bubbly flow, we demonstrate that this UQ approach can quantify the model form uncertainty of the MCFD interfacial force closure relations, thus effectively improving the simulation results with relatively sparse data support.