ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Joseph L. Bottini, Caleb S. Brooks
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1987-2001
Research Article | doi.org/10.1080/00295450.2022.2156244
Articles are hosted by Taylor and Francis Online.
The Two-Fluid Model (TFM) has long been the backbone of engineering-scale two-phase flow simulation in system-analysis codes and computational fluid dynamics codes. The classical TFM is limited in how it can capture the differences in the transport of small and large bubbles. The two-group TFM provides the ability to specify the unique transport characteristics of small and large bubbles separately. Expanding to two sets of conservation equations for the two bubble groups presents the additional challenge of bubble group accounting as bubbles can cross the group boundary. The three mass transfer terms in the two-group TFM are evaluated for flashing, condensing, and boiling flows using a partitioning method. The axial trends in the source terms are examined for these flow conditions with the available intergroup models. Two-group interphase models are implemented and evaluated against experimental data for flashing, condensing, and boiling flows with accurate two-group results. The capabilities of the two-group TFM are evaluated for these flow types, demonstrating the ability to predict two-group vapor properties without the need for flow regime transitions.