ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Joseph L. Bottini, Caleb S. Brooks
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1987-2001
Research Article | doi.org/10.1080/00295450.2022.2156244
Articles are hosted by Taylor and Francis Online.
The Two-Fluid Model (TFM) has long been the backbone of engineering-scale two-phase flow simulation in system-analysis codes and computational fluid dynamics codes. The classical TFM is limited in how it can capture the differences in the transport of small and large bubbles. The two-group TFM provides the ability to specify the unique transport characteristics of small and large bubbles separately. Expanding to two sets of conservation equations for the two bubble groups presents the additional challenge of bubble group accounting as bubbles can cross the group boundary. The three mass transfer terms in the two-group TFM are evaluated for flashing, condensing, and boiling flows using a partitioning method. The axial trends in the source terms are examined for these flow conditions with the available intergroup models. Two-group interphase models are implemented and evaluated against experimental data for flashing, condensing, and boiling flows with accurate two-group results. The capabilities of the two-group TFM are evaluated for these flow types, demonstrating the ability to predict two-group vapor properties without the need for flow regime transitions.