ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Joseph L. Bottini, Caleb S. Brooks
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1987-2001
Research Article | doi.org/10.1080/00295450.2022.2156244
Articles are hosted by Taylor and Francis Online.
The Two-Fluid Model (TFM) has long been the backbone of engineering-scale two-phase flow simulation in system-analysis codes and computational fluid dynamics codes. The classical TFM is limited in how it can capture the differences in the transport of small and large bubbles. The two-group TFM provides the ability to specify the unique transport characteristics of small and large bubbles separately. Expanding to two sets of conservation equations for the two bubble groups presents the additional challenge of bubble group accounting as bubbles can cross the group boundary. The three mass transfer terms in the two-group TFM are evaluated for flashing, condensing, and boiling flows using a partitioning method. The axial trends in the source terms are examined for these flow conditions with the available intergroup models. Two-group interphase models are implemented and evaluated against experimental data for flashing, condensing, and boiling flows with accurate two-group results. The capabilities of the two-group TFM are evaluated for these flow types, demonstrating the ability to predict two-group vapor properties without the need for flow regime transitions.