ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
S. Beetham, J. Capecelatro
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1977-1986
Research Article | doi.org/10.1080/00295450.2023.2178251
Articles are hosted by Taylor and Francis Online.
Turbulence in two-phase flows drives many important natural and engineering processes, from geophysical flows to nuclear power generation. Strong interphase coupling between the carrier fluid and disperse phase precludes the use of classical turbulence models developed for single-phase flows. In recent years, there has been an explosion of machine learning techniques for turbulence closure modeling, though many rely on augmenting existing models. In this work, we propose an approach that blends sparse regression and gene expression programming (GEP) to generate closed-form algebraic models from simulation data. Sparse regression is used to determine a minimum set of functional groups required to capture the physics, and GEP is used to automate the formulation of the coefficients and dependencies on operating conditions. The framework is demonstrated on homogeneous turbulent gas-particle flows in which two-way coupling generates and sustains carrier-phase turbulence.