ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
S. Beetham, J. Capecelatro
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1977-1986
Research Article | doi.org/10.1080/00295450.2023.2178251
Articles are hosted by Taylor and Francis Online.
Turbulence in two-phase flows drives many important natural and engineering processes, from geophysical flows to nuclear power generation. Strong interphase coupling between the carrier fluid and disperse phase precludes the use of classical turbulence models developed for single-phase flows. In recent years, there has been an explosion of machine learning techniques for turbulence closure modeling, though many rely on augmenting existing models. In this work, we propose an approach that blends sparse regression and gene expression programming (GEP) to generate closed-form algebraic models from simulation data. Sparse regression is used to determine a minimum set of functional groups required to capture the physics, and GEP is used to automate the formulation of the coefficients and dependencies on operating conditions. The framework is demonstrated on homogeneous turbulent gas-particle flows in which two-way coupling generates and sustains carrier-phase turbulence.