ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Guanyi Wang, Mamoru Ishii
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1953-1964
Research Article | doi.org/10.1080/00295450.2022.2153559
Articles are hosted by Taylor and Francis Online.
To accurately quantify the interfacial transfer terms in the two-fluid model, the reliable prediction of the interfacial area concentration (IAC) is crucial. The IAC in annular flow, especially the interface between the liquid film and gas core, is particularly important due to its relevance to critical heat flux and reactor operation safety. However, very few experimental and analytical studies have been performed that focus on the IAC of the liquid film in annular flow. In this work, the IAC of the liquid film is measured using a parallel-wire conductance probe for upward annular flow in a 25.4-mm one-dimensional pipe. A total of 25 flow conditions are measured with the range of superficial liquid velocity from 0.15 to 2.00 m/s and the range of superficial gas velocity from 10.0 to 29.6 m/s. The IAC radial profile is obtained from the liquid film time trace measured by the conductance probe, and the accuracy of this method is verified by flow visualization. The effects of the inlet gas and liquid flow rates on the characteristics of the IAC radial distribution as well as area-averaged IACs are analyzed. A new model is developed to predict the IAC radial distribution of the liquid film. The IAC profiles predicted by the model agree very well with the measured IAC profiles for typical annular flow conditions and have a reasonable agreement for the wispy annular flow conditions.