ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Guanyi Wang, Mamoru Ishii
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1953-1964
Research Article | doi.org/10.1080/00295450.2022.2153559
Articles are hosted by Taylor and Francis Online.
To accurately quantify the interfacial transfer terms in the two-fluid model, the reliable prediction of the interfacial area concentration (IAC) is crucial. The IAC in annular flow, especially the interface between the liquid film and gas core, is particularly important due to its relevance to critical heat flux and reactor operation safety. However, very few experimental and analytical studies have been performed that focus on the IAC of the liquid film in annular flow. In this work, the IAC of the liquid film is measured using a parallel-wire conductance probe for upward annular flow in a 25.4-mm one-dimensional pipe. A total of 25 flow conditions are measured with the range of superficial liquid velocity from 0.15 to 2.00 m/s and the range of superficial gas velocity from 10.0 to 29.6 m/s. The IAC radial profile is obtained from the liquid film time trace measured by the conductance probe, and the accuracy of this method is verified by flow visualization. The effects of the inlet gas and liquid flow rates on the characteristics of the IAC radial distribution as well as area-averaged IACs are analyzed. A new model is developed to predict the IAC radial distribution of the liquid film. The IAC profiles predicted by the model agree very well with the measured IAC profiles for typical annular flow conditions and have a reasonable agreement for the wispy annular flow conditions.