ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Alexander Duenas, Qiao Wu, Wade Marcum
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1929-1938
Research Article | doi.org/10.1080/00295450.2023.2232665
Articles are hosted by Taylor and Francis Online.
The particle image velocimetry (PIV) technique is employed for the measurement of the virtual mass of a submerged object, an important parameter in the two-fluid model, particularly so for reactor thermal-hydraulic and safety analyses. Instead of carrying out the measurement through traditional transient processes that mix steady-state drag, virtual mass force, and Basset force, a new PIV approach is developed for steady-state flows through the integration of the fluid kinetic energy around the object. The Basset force, an inseparable transient force in viscous flows, is eliminated in the new approach, making virtual mass quantification possible. This new method has been applied to the virtual mass measurement of a solid cylinder, and although the measurement uncertainty from the flow’s random fluctuations is substantial, the results are very encouraging. The results suggest that the existence of drag force in viscous flow affects the virtual mass, as the flow field is different from the ideal potential flow. When the measurement method was applied to the quantification of air bubbles, no reliable data were obtained due to complications from bubble lateral motions and deformation. Further study is needed for the PIV method to be employed for bubble virtual mass force measurements under steady-state flow conditions.