ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Taehwan Ahn, Julio Diaz, Robert Adams, Victor Petrov, Annalisa Manera
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1898-1913
Research Article | doi.org/10.1080/00295450.2023.2197680
Articles are hosted by Taylor and Francis Online.
High-resolution two-phase flow data in the rod bundle are important in the development and validation of high-fidelity models for computational fluid dynamics and subchannel codes, in particular, those pertaining to light water reactor cooling systems. The Michigan Adiabatic Rod Bundle Flow Experiment (MARBLE) has been constructed as a modular assembly of an 8 × 8 lattice rod bundle to simulate scaled pressurized water reactor and boiling water reactor subchannel assemblies. To establish a high-spatial resolution database of the void fraction in the reactor fuel assembly geometries, tomographic measurements were performed with the High-Resolution Gamma-ray Tomography System, which was designed and built in house; the detector system has a spatial resolution of less than 1.0 mm using 240 LYSO (Lu1.8Y0.2SiO5) scintillators with a fan-beam array. In the present study, the local void fraction was measured with the MARBLE facility under various air-water flow conditions (jg = 0.04 to 0.85 m/s and jl = 0.12 to 0.77 m/s) covering from bubbly to cap-turbulent flows. The local void fraction was also successfully measured under nonuniform and asymmetric air bubble distribution conditions with an investigation of the effect of spacer grids and mixing vanes on void drift across subchannels.