ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Taehwan Ahn, Julio Diaz, Robert Adams, Victor Petrov, Annalisa Manera
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1898-1913
Research Article | doi.org/10.1080/00295450.2023.2197680
Articles are hosted by Taylor and Francis Online.
High-resolution two-phase flow data in the rod bundle are important in the development and validation of high-fidelity models for computational fluid dynamics and subchannel codes, in particular, those pertaining to light water reactor cooling systems. The Michigan Adiabatic Rod Bundle Flow Experiment (MARBLE) has been constructed as a modular assembly of an 8 × 8 lattice rod bundle to simulate scaled pressurized water reactor and boiling water reactor subchannel assemblies. To establish a high-spatial resolution database of the void fraction in the reactor fuel assembly geometries, tomographic measurements were performed with the High-Resolution Gamma-ray Tomography System, which was designed and built in house; the detector system has a spatial resolution of less than 1.0 mm using 240 LYSO (Lu1.8Y0.2SiO5) scintillators with a fan-beam array. In the present study, the local void fraction was measured with the MARBLE facility under various air-water flow conditions (jg = 0.04 to 0.85 m/s and jl = 0.12 to 0.77 m/s) covering from bubbly to cap-turbulent flows. The local void fraction was also successfully measured under nonuniform and asymmetric air bubble distribution conditions with an investigation of the effect of spacer grids and mixing vanes on void drift across subchannels.