ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Yuki Mizushima
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1886-1897
Research Article | doi.org/10.1080/00295450.2023.2229998
Articles are hosted by Taylor and Francis Online.
A new ray-tracing–based calibration method for an Optical fiber–based Reflective Probe (ORP) was developed. This technique enables thickness measurement in micrometers in wavy thin liquid film flow, which is simpler and quicker than other liquid film measurements. First, the relationship between the film thickness and ORP signal was calculated through the ray-tracing simulator. The signal trend showed a steep rate of change within a few-hundred-micron thicknesses, thanks to the emission nature of the step index multimode fiber. The ray-tracing–based calibration was established using the calculated relationship. Second, the calibration method was validated under quiescent conditions. The calibrated ORP measured the thickness and then was compared to visualization. Good agreement was confirmed between the two results at a maximum difference of 20% under 1000 μm in thickness. Finally, thickness measurement for the wavy thin film flow was performed. Airflow (jG = 40 to 75 m/s) was introduced into the rectangle test section, and a small amount of tap water (Q = 30 to 90 mL/min) was injected into the channel plate. The difference in the measured thickness between ORP and high-speed visualization was around 20%. The effectiveness of the new calibration method and ORP measurement including its uncertainty will be discussed.