ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mamoru Ishii, Yang Zhao, Guanyi Wang, Zhuoran Dang
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1867-1885
Review Article | doi.org/10.1080/00295450.2022.2163801
Articles are hosted by Taylor and Francis Online.
To fully realize the advantages of the two-fluid model, accurate prediction of the interfacial area concentration (IAC) is indispensable. Since conventional flow regime–based IAC correlations are not capable of dynamically describing the evolution of interfacial structure, the interfacial area transport equation (IATE) was developed to close the two-fluid model. In the past 30 years, intensive efforts have been made to improve the prediction performance of IATE and extend the experimental database for the IATE benchmark. Recent efforts of the IATE development and benchmark conducted by the Thermal-hydraulics and Reactor Safety Laboratory at Purdue University are reviewed in this paper. This review covers (1) the development of IATE; (2) the experimental database for IATE modeling, including instrumentation development, local measurement data of adiabatic/diabatic two-phase flow, and annular flow characterization; and (3) implementation and evaluation of IATE in one-dimensional/three-dimensional scenarios. Significant progress has been achieved since 2009, and future works required to advance the modeling of IATE are also suggested.