ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Mamoru Ishii, Yang Zhao, Guanyi Wang, Zhuoran Dang
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1867-1885
Review Article | doi.org/10.1080/00295450.2022.2163801
Articles are hosted by Taylor and Francis Online.
To fully realize the advantages of the two-fluid model, accurate prediction of the interfacial area concentration (IAC) is indispensable. Since conventional flow regime–based IAC correlations are not capable of dynamically describing the evolution of interfacial structure, the interfacial area transport equation (IATE) was developed to close the two-fluid model. In the past 30 years, intensive efforts have been made to improve the prediction performance of IATE and extend the experimental database for the IATE benchmark. Recent efforts of the IATE development and benchmark conducted by the Thermal-hydraulics and Reactor Safety Laboratory at Purdue University are reviewed in this paper. This review covers (1) the development of IATE; (2) the experimental database for IATE modeling, including instrumentation development, local measurement data of adiabatic/diabatic two-phase flow, and annular flow characterization; and (3) implementation and evaluation of IATE in one-dimensional/three-dimensional scenarios. Significant progress has been achieved since 2009, and future works required to advance the modeling of IATE are also suggested.