ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Mamoru Ishii, Yang Zhao, Guanyi Wang, Zhuoran Dang
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1867-1885
Review Article | doi.org/10.1080/00295450.2022.2163801
Articles are hosted by Taylor and Francis Online.
To fully realize the advantages of the two-fluid model, accurate prediction of the interfacial area concentration (IAC) is indispensable. Since conventional flow regime–based IAC correlations are not capable of dynamically describing the evolution of interfacial structure, the interfacial area transport equation (IATE) was developed to close the two-fluid model. In the past 30 years, intensive efforts have been made to improve the prediction performance of IATE and extend the experimental database for the IATE benchmark. Recent efforts of the IATE development and benchmark conducted by the Thermal-hydraulics and Reactor Safety Laboratory at Purdue University are reviewed in this paper. This review covers (1) the development of IATE; (2) the experimental database for IATE modeling, including instrumentation development, local measurement data of adiabatic/diabatic two-phase flow, and annular flow characterization; and (3) implementation and evaluation of IATE in one-dimensional/three-dimensional scenarios. Significant progress has been achieved since 2009, and future works required to advance the modeling of IATE are also suggested.