ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Rei Kimura, Yuki Nakai, Tadafumi Sano, Atsushi Sakon, Satoshi Wada
Nuclear Technology | Volume 209 | Number 11 | November 2023 | Pages 1859-1866
Note | doi.org/10.1080/00295450.2023.2212828
Articles are hosted by Taylor and Francis Online.
An experiment was conducted that demonstrates a novel core power distribution reconstruction method based on ex-core detectors using time-dependent measurement at the University Teaching and Research Reactor of Kindai University (UTR-KINKI). Although the proposed method PHOEBE was able to identify the power distribution change caused by control rods under static conditions in a previous experiment, time-dependent experiments were not conducted. Hence, the present study measured time-dependent neutron counts using ex-core detectors to reconstruct the power distribution based on PHOEBE. Extraction of the control rods was expected to cause a shift in the reactor power distribution from the north side to the south, and the results of the power distribution reconstruction also demonstrated this power shift. This result experimentally and qualitatively demonstrated the detection of time-dependent power shifts based on PHOEBE. However, quantitative verification was difficult in this study because there are no verified time-dependent three-dimensional neutronics codes available. This issue will be addressed in a future study when a code becomes available.