ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Brock Jolicoeur, Norbert Hugger, David Medich
Nuclear Technology | Volume 209 | Number 11 | November 2023 | Pages 1819-1825
Regular Research Article | doi.org/10.1080/00295450.2023.2204988
Articles are hosted by Taylor and Francis Online.
We investigate the image quality and beam intensity of thermal neutron radiography after replacing a standard single-channel neutron collimator with a compact array of microcollimators. In this study, the MCNP6 Monte Carlo computer code was used to simulate a 2 × 2-cm-area isotropic thermal neutron source, which then was collimated by an array of micron-sized neutron collimators that measured 29.8 μm in diameter and with lengths that varied from 0.6 to 3 mm. These microcollimators were spaced 30 μm apart and assembled into a 2 × 2-cm array.
The image quality of the neutron beams produced by the resulting collimator arrays was assessed by imaging the edge of a very thin (~0.01-mm) gadolinium foil to obtain the image Modulation Transfer Function (MTF). The MCNP6 resulting flux map from each simulation then was converted into a grayscale .tiff image and the image’s resulting MTF obtained using the ImageJ computer program with the imaging beam geometric unsharpness, which is a limiting factor in the image resolution determined at the 10% value of the MTF curve.
In this study, we found that a 2 × 2× 0.298-cm microcollimator, corresponding to a length-to–hole diameter ratio of 100:1 and a collimator length of 2.98 mm produced a beam with a geometric unsharpness of 32 μm. Compared to a standard single-channel collimator with a 2 × 2-cm aperture, the single-channel collimator would need to be 660 cm long to produce an equivalent geometric sharpness. Yet because of its shorter length, the imaging beam intensity from our 2.98-mm-thick collimator array was approximately 50 times greater than that of an equivalent single-channel collimator.