ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Guanyi Wang, Cezary Bojanowski, Akshay Dave, David Jaluvka, Lin-Wen Hu, Erik Wilson
Nuclear Technology | Volume 209 | Number 11 | November 2023 | Pages 1797-1818
Regular Research Article | doi.org/10.1080/00295450.2023.2205971
Articles are hosted by Taylor and Francis Online.
The hydromechanical stability of the fuel plates in parallel coolant channels of a Materials Testing Reactor (MTR) fuel element design is of great importance to the safety of research and test reactors. Previous analytical, experimental, and numerical efforts focused on parallel channels with the same or similar size; also, in the prior numerical simulations, the fuel plate was often assumed to be perfectly flat. This work presents the results of a fluid-structure interaction simulation performed to evaluate the flow-induced deflections of the fuel plates in the low-enriched uranium (LEU, <20 wt% 235U) fuel element design for the conversion (from highly enriched uranium) of the Massachusetts Institute of Technology Reactor (MITR-II, also referred to as MITR). Various manufacturing and assembly tolerances of the MITR LEU elements are considered in the analysis, and the effects of channel size disparity, nonideal plate shape, and flow rate uncertainty are investigated. Results show that, for all cases analyzed, the deflection occurs toward the larger channel, and the change in any channel stripe remains small (less than 0.021 mm) compared to fabrication tolerances. In addition to simulation work, a hydraulic performance test of the MITR LEU fuel element is currently planned to support conversion to the use of LEU fuel.