ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Josep M. Soler, Pekka Kekäläinen, Veli-Matti Pulkkanen, Luis Moreno, Aitor Iraola, Paolo Trinchero, Milan Hokr, Jakub Říha, Václava Havlová, Dagmar Trpkošová, Aleš Vetešník, Dušan Vopálka, Libor Gvoždík, Martin Milický, Michal Polák, Yuta Fukatsu, Tsuyoshi Ito, Yukio Tachi, Urban Svensson, Dong Kyu Park, Sung-Hoon Ji, Björn Gylling, G. William Lanyon
Nuclear Technology | Volume 209 | Number 11 | November 2023 | Pages 1765-1784
Regular Research Article | doi.org/10.1080/00295450.2023.2209234
Articles are hosted by Taylor and Francis Online.
The REPRO-TDE test was performed at a depth of about 400 m in the ONKALO underground research facility in Finland. Synthetic groundwater containing radionuclide tracers [tritiated water tracer (HTO), 36Cl, 22Na, 133Ba, and 134Cs] was circulated for about 4 years in a packed-off interval of the injection borehole. Tracer activities were additionally monitored in two observation boreholes. The test was the subject of a modeling exercise by the SKB GroundWater Flow and Transport of Solutes Task Force. Eleven teams participated in the exercise, using different model concepts and approaches. Predictive model calculations were based on laboratory-based information concerning porosities, diffusion coefficients, and sorption partition coefficients. After the experimental results were made available, the teams were able to revise their models to reproduce the observations.
General conclusions from these back-analysis calculations include the need for reduced effective diffusion coefficients for 36Cl compared to those applicable to HTO (anion exclusion), the need to implement weaker sorption for 22Na compared to results from laboratory batch sorption experiments, and the observation of large differences between the theoretical initial concentrations for the strongly sorbing 133Ba and 134Cs, and the first measured values a few hours after tracer injection.
Different teams applied different concepts, concerning mainly the implementation of isotropic versus anisotropic diffusion, or the possible existence of borehole disturbed zones around the different boreholes. The role of microstructure was also addressed in two of the models.