ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
Nancy Granda Duarte, Irina I. Popova, Erik B. Iverson, Franz X. Gallmeier, Paul P. H. Wilson
Nuclear Technology | Volume 209 | Number 11 | November 2023 | Pages 1747-1764
Regular Research Article | doi.org/10.1080/00295450.2023.2205554
Articles are hosted by Taylor and Francis Online.
In accelerator-driven systems, charged particles and high-energy neutrons can contribute to the production of nuclides that can persist long after the system has been shut down. These nuclides release photons that contribute to the biological dose. It is essential to quantify the biological dose as a function of time after shutdown to ensure safe working conditions for laborers during maintenance procedures. The shutdown dose rate (SDR) can be calculated with the Rigorous Two-Step (R2S) method, which includes a neutron and photon transport coupled with an activation calculation. For accelerator-driven systems, calculating SDR presents challenges related to the neutron cross-sectional data available for high-energy neutrons. A tally was implemented to collect isotope production data directly in a Monte Carlo N-Particle (MCNP) calculation. The output of this RNUCS tally is then used directly in an activation calculation, bypassing the need to use cross-section data with the neutron flux to obtain the isotope production and destruction data. A mesh-based RNUCS-R2S workflow has been developed based on this tally to calculate SDR in accelerator-driven systems. This workflow operates directly on computer-aided design geometry and supports using a meshed photon source. This workflow has been verified against a cell-based RNUCS-R2S workflow. A test problem with the essential characteristics of an accelerator-driven system was created to use in this analysis. The SDR results are within 40% of the cell-based RNUCS-R2S results. The workflow was also validated with the spallation neutron source system. Most detectors’ SDR results are within 50%, with a few detectors having a significantly lower SDR result than the experimental value.