ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
DOE offering $13M grant program for advanced reactor licensing
The Department of Energy has announced a competitive funding opportunity of up to $13 million to help first movers defray the licensing costs of bringing advanced nuclear reactors to market.
Jonathan Scherr, Pavel Tsvetkov
Nuclear Technology | Volume 209 | Number 11 | November 2023 | Pages 1733-1746
Regular Research Article | doi.org/10.1080/00295450.2023.2209229
Articles are hosted by Taylor and Francis Online.
Abilene Christian University (ACU) is developing a 1-MW(thermal) molten salt research reactor that will be built on the ACU campus. A conceptual reactor core model was developed to facilitate the safety analysis required for a construction permit. A series of scoping studies were performed seeking to define the reactor core design parameters subject to a variety of design requirements. A Pareto curve identifying the tradeoff between uranium and LiF-BeF2 was determined. Within this curve, at least 250 kg of uranium and 700 kg of LiF-BeF2 are needed, albeit for different reactor configurations and fuel salt compositions. The cylindrical reactor vessel associated with the best-performing fuel salt composition is ~130 cm in diameter, ~170 cm tall, and contains ~2.5 tons of graphite. The conversion ratio of the reactor is low and will require regular refueling. The shift in neutron spectrum observed with the changing fuel salt composition does not significantly impact reactivity loss with respect to burnup.