ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Carolina da Silva Bourdot Dutra, Elia Merzari, John Acierno, Adam Kraus, Annalisa Manera, Victor Petrov, Taehwan Ahn, Pei-Hsun Huang, Dillon Shaver
Nuclear Technology | Volume 209 | Number 10 | October 2023 | Pages 1592-1616
Research Article | doi.org/10.1080/00295450.2023.2181040
Articles are hosted by Taylor and Francis Online.
Heat pipe microreactors are reactor designs that primarily use liquid-metal heat pipes to cool the core. The main interest in heat pipes is the fact that they can remove heat passively. This, along with the use of liquid metal, allows the reactor to operate at higher temperatures. Although the use of heat pipes in nuclear reactors is new, liquid-metal heat pipe technology is mature. Nevertheless, experimental data on heat pipes are scarce, and very little is known about their behavior during abnormal operations and close to their thermal limits. Therefore, new experiments and accurate heat pipe simulations are needed to develop reliable closure models. This work describes a joint experimental and numerical investigation into heat pipes that attempts an initial closure of this gap. The numerical and experimental efforts are currently proceeding in parallel, aimed at different aspects of heat pipes. The numerical part is focused on gaps in local closures, and the experiments capture the overall heat pipe behavior.