ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Jiaxin Mao, Victor Petrov, Annalisa Manera, Trevor K. Howard, Sacit M. Cetiner
Nuclear Technology | Volume 209 | Number 10 | October 2023 | Pages 1565-1576
Research Article | doi.org/10.1080/00295450.2022.2133505
Articles are hosted by Taylor and Francis Online.
Measuring the flow rate in High-Temperature Gas-cooled Reactors is a challenge for traditional flowmeters due to the high flow rate (10 to 15 m/s at nominal operating conditions), high operating temperatures (>700°C), and high neutron flux and gamma fields in the reactor core. This paper discusses developing a novel flowmeter that can work under these extreme conditions. Oak Ridge National Laboratory first proposed using acoustics to measure the flow in the reactor, more specifically, using a Kelvin-Helmholtz resonator to correlate the gas flow rate with vibration frequency. With the primary goal of developing an acoustic measurement technique, we propose an acoustic corrugated pipe as a candidate for the development of a novel gas flowmeter. Experimental investigations on corrugated pipes have confirmed the dependence of the whistling frequency on the gas flow rate. Also, a tube-in-tube configuration is proposed for the flowmeter prototype, which can help mitigate resonance between the system and the flowmeter. Experimental investigation using the prototype has shown good independence from the piping system. Furthermore, Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations have been performed and validated with a satisfactory agreement, providing confidence that URANS models can adequately predict the characteristic curve (flow rate versus frequency) of the corrugated pipe and can therefore be used to optimize the flowmeter designs cost-effectively.