ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
J. B. Lee, B. U. Bae, Y. S. Park, J. Kim, S. Cho, N. H. Choi, K. H. Kang
Nuclear Technology | Volume 209 | Number 10 | October 2023 | Pages 1537-1548
Research Article | doi.org/10.1080/00295450.2022.2149040
Articles are hosted by Taylor and Francis Online.
A test called B4.2 in the OECD-ATLAS2 project was performed to simulate loss of the residual heat removal system (RHRS) during mid-loop operation (MLO) using a thermal-hydraulic (T-H) integral-effect test facility: the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS). The main purpose of this test was to investigate a T-H transient in the reactor coolant system (RCS) during loss of the RHRS and to evaluate the effectiveness of reflux condensation and the capability of a safety injection tank (SIT) on shutdown coolability. The initial and boundary conditions for the B4.2 test were appropriately determined according to a state of MLO corresponding to 65 h after reactor trip in the Advanced Power Reactor 1400 MW(electric) (APR1400). During the loss of RHRS accident transient simulation, major T-H parameters such as system pressures, temperatures, and collapsed water levels in the RCS were measured, and unique T-H phenomena such as reflux/cocurrent condensations, off-take, countercurrent flow, and countercurrent flow limitation were investigated. In this paper, the overall T-H behavior in the RCS during a simulated loss of the RHRS with SITs is highlighted to provide a better understanding of T-H phenomena regarding coolability with reflux condensation.