ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
L. E. Herranz, F. Sánchez, S. Gupta
Nuclear Technology | Volume 209 | Number 10 | October 2023 | Pages 1523-1536
Research Article | doi.org/10.1080/00295450.2022.2122679
Articles are hosted by Taylor and Francis Online.
The removal of aerosol particles and vapors in gas bubbles moving through a water pool is known to be an efficient means to reduce source term to the environment during severe accidents, as happened in Fukushima Daiichi. This trapping, called pool scrubbing, entails a complex phenomenology in which hydrodynamics, thermal hydraulics, and aerosol physics strongly affect each other and determine the net transfer of radioactivity coming out from the aqueous pond. More than 20 experimental programs have addressed this issue since the early 1980s, but few of them did it in a systematic and representative way. This paper thoroughly reviews the entire pool scrubbing database until 2016 and assesses the adequacy of the experimental setup, representativeness of boundary conditions, weaknesses in decontamination factor derivation, data uncertainties, and some other aspects to finally synthesize a reduced number of experiments that could be used as an experimental matrix for the validation of pool scrubbing models. More than 500 tests were reviewed and classified as Qualified for Validation, Useful for Understanding, or Not Useful; less than 15% of these experiments are considered in the proposed validation matrix due to different reasons. Major insights and remaining needs are also highlighted. This work was conducted under the framework of the Integration of Pool Scrubbing Research to Enhance Source-Term Calculations, or the IPRESCA project, led by Becker Technologies, in the framework of the Sustainable Nuclear Energy Technology Platform/Nuclear Generation II & III Alliance/Technical Area 2.