ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Aaron J. Wysocki, Robert K. Salko, Igor Arshavsky
Nuclear Technology | Volume 209 | Number 10 | October 2023 | Pages 1466-1484
Research Article | doi.org/10.1080/00295450.2023.2175596
Articles are hosted by Taylor and Francis Online.
A robust and accurate multiphysics engineering simulator is being developed to model the core behavior and system response of pressurized water reactors. This simulator relies on the NESTLE and CTF computer codes to model the neutronics and thermal hydraulics (TH), respectively, inside the core on a nodal scale and on the Reactor Excursion and Leak Analysis Program—Three Dimensional (RELAP5-3D) to model the entire nuclear steam supply system. The RELAP5-3D model includes highly detailed nodalization and multidimensional flow modeling throughout the vessel. Previously, pin-resolved data generated via the Virtual Environment for Reactor Analysis core simulator were used to improve the accuracy of the NESTLE core predictions. The engineering simulator being developed as part of this work uses the 3KEYMASTER platform to couple the enhanced NESTLE model to a nodal-fidelity CTF model to balance run time with accuracy; NESTLE provides node-dependent powers to CTF, and CTF provides node-dependent coolant densities and fuel temperatures to NESTLE.
An overlapping domain approach is used for the core TH in which RELAP5-3D provides core boundary conditions based on the system response and CTF provides a node-dependent coolant heating rate to the RELAP5-3D core solution. In the preliminary TH demonstration discussed in this paper, CTF and RELAP5-3D provided similar steady-state core predictions, indicating the hydraulic compatibility between the codes, as well as reasonable and expected behavior under hypothetical transient conditions. This provides an initial step in ongoing efforts toward a robust, multiscale TH/neutronics engineering simulator capability.