ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Igor A. Bolotnov
Nuclear Technology | Volume 209 | Number 10 | October 2023 | Pages 1405-1413
Review Article | doi.org/10.1080/00295450.2023.2232222
Articles are hosted by Taylor and Francis Online.
The significant progress in the last decade of high-resolution single- and two-phase flow simulations of reactor-relevant flows is summarized in this review paper. The rapid development of high-performance computing capabilities creates exciting opportunities to study complex reactor thermal-hydraulic phenomena. Today’s advances in thermal-hydraulic analysis, interface capturing simulations, and advanced data processing and analysis approaches will help pave the way to the next level of understanding of two-phase flow behavior in nuclear reactors.
This paper discusses two major topics: (1) a brief review of interface-capturing simulations in recent years and (2) several opportunities to advance these numerical research tools in the future. The first part discusses typical computational methods used for these simulations and provides some examples of past work, as well as computational cost estimates and affordability of such simulations for research and industrial applications. In the second part, some specific examples are discussed that could be analyzed using exascale supercomputers being designed and projected to be online in the next several years. New-generation methodologies are required to take full advantage of these capabilities to greatly enhance the scientific understanding of complex two-phase flow phenomena in various conditions relevant to industrial applications.